CMOS Programmable Timer High Voltage Types (20V Rating)

Features

- Low Symmetrical Output Resistance, Typically 100Ω at $V_{D D}=15 \mathrm{~V}$
- Built-In Low-Power RC Oscillator
- Oscillator Frequency Range \qquad DC to 100 kHz
- External Clock (Applied to Pin 3) can be Used Instead of Oscillator
- Operates as 2^{N} Frequency Divider or as a SingleTransition Timer
- $\mathbf{Q} / \overline{\mathbf{Q}}$ Select Provides Output Logic Level Flexibility
- AUTO or MASTER RESET Disables Oscillator During Reset to Reduce Power Dissipation
- Operates With Very Slow Clock Rise and Fall Times
- Capable of Driving Six Low Power TTL Loads, Three Low-Power Schottky Loads, or Six HTL Loads Over the Rated Temperature Range
- Symmetrical Output Characteristics
- 100\% Tested for Quiescent Current at 20V
- 5V, 10V, and 15V Parametric Ratings
- Meets All Requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Description

CD4541B programmable timer consists of a 16-stage binary counter, an oscillator that is controlled by external R-C components (2 resistors and a capacitor), an automatic power-on reset circuit, and output control logic. The counter increments on positive-edge clock transitions and can also be reset via the MASTER RESET input.

Pinout

CD4541B
(CERDIP, PDIP, SOIC, SOP, TSSOP)

The output from this timer is the Q or $\overline{\mathrm{Q}}$ output from the 8th, 10th, 13th, or 16th counter stage. The desired stage is chosen using time-select inputs A and B (see Frequency Select Table).
The output is available in either of two modes selectable via the MODE input, pin 10 (see Truth Table). When this MODE input is a logic "1", the output will be a continuous square wave having a frequency equal to the oscillator frequency divided by 2^{N}. With the MODE input set to logic "0" and after a MASTER RESET is initiated, the output (assuming Q output has been selected) changes from a low to a high state after $2^{\mathrm{N}-1}$ counts and remains in that state until another MASTER RESET pulse is applied or the MODE input is set to a logic " 1 ".
Timing is initialized by setting the AUTO RESET input (pin 5) to logic " 0 " and turning power on. If pin 5 is set to logic " 1 ", the AUTO RESET circuit is disabled and counting will not start until after a positive MASTER RESET pulse is applied and returns to a low level. The AUTO RESET consumes an appreciable amount of power and should not be used if low-power operation is desired. For reliable automatic power-on reset, V_{DD} should be greater than 5 V .
The RC oscillator, shown in Figure 2, oscillates with a frequency determined by the RC network and is calculated using:
$\mathrm{f}=\frac{1}{2.3 \mathrm{R}_{\mathrm{TC}} \mathrm{C}_{\mathrm{TC}}}$
Where f is between 1 kHz and 100 kHz and $R_{S} \geq 10 \mathrm{k} \Omega$ and $\approx 2 R_{T C}$

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE
CD4541BF3A	-55 to 125	14 Ld CERDIP
CD4541BE	-55 to 125	14 Ld PDIP
CD4541BM	-55 to 125	14 Ld SOIC
CD4541BMT	-55 to 125	14 Ld SOIC
CD4541BM96	-55 to 125	14 Ld SOIC
CD4541BNSR	-55 to 125	14 Ld SOP
CD4541BPW	-55 to 125	14 Ld TSSOP
CD4541BPWR	-55 to 125	14 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250 .

Functional Diagram

FIGURE 1.
FREQUENCY SELECTION TABLE

A	B	NO. OF STAGES N	COUNT 2 $^{\mathbf{N}}$
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

TRUTH TABLE

PIN	STATE	
	$\mathbf{0}$	$\mathbf{1}$
5	Auto Reset On	Auto Reset Disable
6	Master Reset Off	Master Reset On
9	Output Initially Low After Reset (Q)	Output Initially High After Reset ($\overline{\mathrm{Q}})$
10	Single Transition Mode	Recycle Mode

FIGURE 2. RC OSCILLATOR CIRCUIT

Absolute Maximum Ratings

DC Supply - Voltage Range, V_{DD}
Voltages Referenced to $\mathrm{V}_{\text {SS }}$ Terminal -0.5 V to +20 V
Input Voltage Range, All Inputs -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
DC Input Current, Any One Input . $\pm 10 \mathrm{~mA}$
Device Dissipation Per Output Transistor
For $\mathrm{T}_{\mathrm{A}}=$ Full Package Temperature Range
(All Package Types)
100 mW

Operating Conditions

Temperature Range T_{A}
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Supply Voltage Range
For $\mathrm{T}_{\mathrm{A}}=$ Full Package Temperature Range 3V (Min), 18V (Typ)

Thermal Information

Package Thermal Impedance, θ_{JA} (see Note 1)

PDIP package	$80^{\circ} \mathrm{C} / \mathrm{W}$
SOIC package	$86^{\circ} \mathrm{C} / \mathrm{W}$
SOP package	$76^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP package	$113^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature (Plastic Package)	. $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range (TSTG)	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s)	
At Distance $1 / 16$ in $\pm 1 / 32$ in ($1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm}$) from case for 10s Maximum (SOIC - Lead Tips Only)	$\ldots 265^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Specifications

PARAMETER	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (${ }^{\circ} \mathrm{C}$)							UNITS
	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \\ & (\mathrm{~V}) \end{aligned}$	$V_{D D}$ (V)	-55	-40	85	125	25			
								MIN	TYP	MAX	
Quiescent Device Current, (Note 2) IDD (Max)	-	0, 5	5	5	5	150	150	-	0.04	5	$\mu \mathrm{A}$
	-	0, 10	10	10	10	300	300	-	0.04	10	$\mu \mathrm{A}$
	-	0,15	15	20	20	600	600	-	0.04	20	$\mu \mathrm{A}$
	-	0,20	20	100	100	3000	3000	-	0.08	100	$\mu \mathrm{A}$
Output Low (Sink) Current loL (Min)	0.4	0, 5	5	1.9	1.85	1.26	1.08	1.55	3.1	-	mA
	0.5	0, 10	10	5	4.8	3.3	2.8	4	8	-	mA
	1.5	0, 15	15	12.6	12	8.4	7.2	10	20	-	mA
Output High (Source) Current, IOH (Min)	4.6	0, 5	5	-1.9	-1.85	-1.26	-1.08	-1.55	-3.1	-	mA
	2.5	0, 5	5	-6.2	-6	-4.1	-3	-5	-10	-	mA
	9.5	0, 10	10	-5	-4.8	-3.3	-2.8	-4	-8	-	mA
	13.5	0, 15	15	-12.6	-12	-8.4	-7.2	-10	-20	-	mA
Output Voltage: Low-Level, VOL (Max)	-	0, 5	5	-	0.05			-	0	0.05	V
	-	0, 10	10	-	0.05			-	0	0.05	V
	-	0,15	15	-	0.05			-	0	0.05	V
Output Voltage: High-Level, V_{OH} (Min)	-	0, 5	5	-	4.95			4.95	5	-	V
	-	0, 10	10	-	9.95			9.95	10	-	V
	-	0, 15	15	-	14.95			14.95	15	-	V
Input Low Voltage, V_{IL} (Max)	0.5, 4.5	-	5	-	1.5			-	-	1.5	V
	1,9	-	10	-	3			-	-	3	V
	1.5, 13.5	-	15	-	4			-	-	4	V

Electrical Specifications (Continued)

PARAMETER	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (${ }^{\circ} \mathrm{C}$)							UNITS
	V_{0} (V)	$\mathrm{V}_{\text {IN }}$ (V)	$V_{D D}$ (V)	-55	-40	85	125	25			
								MIN	TYP	MAX	
Input High Voltage, V_{IH} (Min)	0.5, 4.5	-	5	-		3.5		3.5	-	-	V
	1, 9	-	10	-		7		7	-	-	V
	1.5, 13.5	-	15	-		11		11	-	-	V
Input Current, ${ }_{\text {IN }}$ (Max)	-	0,18	18	± 0.1	± 0.1	± 1	± 1	-	$\pm 10^{-5}$	± 0.1	$\mu \mathrm{A}$

NOTE:
2. With AUTO RESET enabled, additional current drain at $25^{\circ} \mathrm{C}$ is:
$7 \mu \mathrm{~A}$ (Typ), $200 \mu \mathrm{~A}$ (Max) at 5 V ;
$30 \mu \mathrm{~A}$ (Typ), $350 \mu \mathrm{~A}$ (Max) at 10 V ;
$80 \mu \mathrm{~A}$ (Typ), $500 \mu \mathrm{~A}$ (Max) at 15 V

Dynamic Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$

PARAMETER	SYMBOL	$\mathrm{V}_{\text {DD }}(\mathrm{V})$	MIN	TYP	MAX	UNITS
Propagation Delay Times Clock to Q	$\left(2^{8}\right) t_{\text {PHL }}, t_{\text {PLH }}$	5	-	3.5	10.5	$\mu \mathrm{s}$
		10	-	1.25	3.8	$\mu \mathrm{s}$
		15	-	0.9	2.9	$\mu \mathrm{s}$
	$\left(2^{16}\right) t_{\text {PHL }}, t_{\text {PLH }}$	5	-	6.0	18	$\mu \mathrm{s}$
		10	-	3.5	10	$\mu \mathrm{s}$
		15	-	2.5	7.5	$\mu \mathrm{s}$
Transition Time	${ }^{\text {T }}$ HL	5	-	100	200	ns
		10	-	50	100	ns
		15	-	40	80	ns
	${ }_{\text {T }}{ }_{\text {HL }}$	5	-	180	360	ns
		10	-	90	180	ns
		15	-	65	130	ns
MASTER RESET, CLOCK Pulse Width		5	900	300	-	ns
		10	300	100	-	ns
		15	225	85	-	ns
Maximum Clock Pulse Input Frequency	${ }^{\mathrm{f}} \mathrm{CL}$	5	-	1.5	-	MHz
		10	-	4	-	MHz
		15	-	6	-	MHz
Maximum Clock Pulse Input Rise or Fall time	t_{r}, t_{f}	5,10,15	Unlimited			$\mu \mathrm{s}$

CD4541B

Digital Timer Application

A positive pulse on MASTER RESET resets the counters and latch. The output goes high and remains high until the number of pulses, selected by A and B, are counted. This circuit is retriggerable and is as accurate as the input frequency. If additional accuracy is desired, an external clock can be used on pin 3. A setup time equal to the width of the one-shot output is required immediately following initial power up, during which time the output will be high.

FIGURE 3. DIGITAL TIMER APPLICATION CIRCUIT

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A). D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)
8 PINS SHOWN

PIMS	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
	0.189	0.337	0.386
	$(4,80)$	$(8,55)$	$(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM	PINS **	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com	Audio
Data Converters	dataconverter.ti.com	Automotive
DSP	dsp.ti.com	Broadband
Interface	interface.ti.com	Digital Control
Logic	logic.ti.com	Military
Power Mgmt	power.ti.com	Optical Networking
Microcontrollers	microcontroller.ti.com	Security
		Telephony
		Video \& Imaging
		Wireless

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

